Digital Design and FPGA
Implementation of a Wireless
Video Surveillance System

Vivek Shah
Noel Campbell
Raymond Tong
Introductory Digital Systems Laboratory

5/19/2006

Abstract:

This laboratory used a Xilinx FPGA to create a video surveillance system with wireless transmission as a digital circuit. The
surveillance system was fully functional and able to capture, encode, and transmit and image, as well as receive, decode, and
display the image. ModelSim simulations were used to test the various modules of the surveillance system, as well as Verilog
test benches. After a comprehensive suite of tests found no errors in the design, the surveillance system was programmed into
a FPGA and passed physical testing as well.

bl s

.
1.
8.

Title Page and Abstract
Table of Contents
List of Figures, Tables, and Equations
Operational Overview
Module Description and Implemention
a. Capture-Encode-Transmit System
i Video Capture
NTSC Decoder
Store 64
Set Address
YVGA Controller
Delay
YCrCh to RGB converter
. Display
ii. Video Memory (Encoder)
iii. Encoder
1. DCT Multiply
a. DCT Front
b. DCT Table
e. Multiplier Shift Register
d. DCT Back
2. Encode_memory_register
3. Encode FSM
iv. Wireless Block Memory
V. Wireless Transmitter
1. Transmitter Control Unit
a. TX Shift Register
b. RS3232 Sender
Vi Wireless Packet Sender
b. Receiver-Decode-Display System
i. Wireless Receiver
1. Packet Receiver
2. Receiver Control Unit
a. RS232 Receiver
b. RX Shift Register
ii. Wireless Block Memory (Decoder)
iii. Decoder
1. DCT Multiply Decode
a. DCT Front Decode
b. DCT Table
e. Multiplier Shift Register
d. DCT Back Decode
2. Decoder FSM
v. Video Memory (Decode)
v. Video Display
1. Read 64
Testing and Debugging
Conclusion
Appendix

M e

Table of Contents

00 D0 =b =) =0 =0 O 3% Lh Ln L L B L bd o=

[REl71 X145

I

1aX.

A

book118.com

List of Figures

Figure 1 = System Diagram ...
Figure 2 — Block diagram of "\"ld&n Capture Mudule

Figure 3 — Set Address Finite State Machine...........
Figure 4 — Writing to Video Memory Process_..

Figure 5 — DCT coefficients used in the e:m:nded hlurck
Figure 6 — Block diagram for encoder module. .

Figure 7 — State Transition Diagram for Emudﬂr F‘SM

Figure 8: Transmitter Block Diagram....

Figure 9 - Wireless Receiver Block Dla.gram

Figure 10— Block diagram of Decoder module...

Figure 11 — State Transition Diagram for Dﬂﬂﬂdﬂ FSM.
Figure 12 — Block diagram of the Video Display Module. ...

Figure 13 — Video Capture/Display Testbench..

Figure 14 = Video Encoder Testbench Mudf.ISlm wavefurm nutpms
Figure 15 = Decoder Testbench ModelSim waveform output. ...

Figure 16: Logic analyzer screenshot verifying overall system data ﬂuw

List of Tahles

Table 1 = Blanking and Synching Signal Values...

Table 2 = DCT Coefficient matrix as stored in memn-r}r usmg ﬁxed pmnt OAtION. e

Table 3 —Outputs for ENCODE_BLOCK state of encode FSM. .

List of Equations

Equation 1 = Matrix novation of DCT using 8x8 matrices.. -

Equation 2 = Two dimensional Discrete Consine Tmmfbrm algﬁnﬂun
Equation 3 — Matrix notation of IDCT using 8x8 matrices.. .

Equation 4 — Two dimensional Inverse Discrete Cosine Tramfblm algenthm

Operational Overview

The problem with conventional security systems today is that they are mostly wired, meaning the security station must be
placed within a fixed distance from the camera. This usually means that the security camera must be placed in a fixed
location because it is difficult to move a wire embedded in the wall or ceiling of a building. In order to provide more
flexibility, this project implemented a wireless security system where image data is sent wirelessly to a receiver station and
displayed on the screen. However, in a wireless system where the transfer rate is more restrictive than a wired system, the
information must be condensed in some form. This particular system uses a proprietary DCT based encoding method similar

to JPEG encoding to decrease the size of the image data.

There are six main components of this system. Image data must be captured, encoded, transmitted wirelessly, received
wirelessly, decoded, and displayed on the monitor. A system diagram if provided in Figure 1.

N Video N Block N Video Block Wireless
] *| Capture | Memory "| Encoder Memory Transmitter
Matrix
. -
Labkit # 1 AR
L) 1 1 L] 1)
¥ 1 1 n 1
1 1 1 1]
[] 1 [] [] 1
¥ 1 I L]
L] 1] L])
[i] [] []
¥¥Yr¥ Ty
,/ Video
VGA Monitor Block Block Wireless
Memory Decoder Memory Receiver
Matrix
Labkit # 2

Figure 1 - System Diagram

The system was designed with modularity in mind. In order to achieve this, every subsystem is separated by a memory
interface.

In normal operation, analog camera data is converted to a digital bit stream by ADV7185 chip on the labkit. Then this data is
organized into a 240X240 pixel image, stripped of any chrominance {color) values, and written into memory so that it can be
encoded. The encoder module processes the stored image by applying a Discrete Cosine Transform to 8x8 pixel blocks. The
resulting coefficients are sent through the R8323 transmitter to the wireless transmitter. The encoded data is then divided into
10 byte packets and transmitted across the wireless channel. Once the data has been received, the wireless receiver sends the
data to the receiver labkit via the RS232 interface and commits the data to memory to be decoded. Using the Inverse DCT
algorithm, the encoded data is decoded into grayscale pixels. These pixels are displayved on the screen in an image by the

video display unit.

A 240X240 grayscale image contains nearly half a mega bit of information. The challenge of this project was to decrease it
to the smallest size possible in order to maximize the update rate (in framesfsecond) and still maintain a recognizable picture.
Here, it was possible to take a 512 bit block of information (an 8X8 pixel block) and condense it down to 78 bits (70,200 bits
for a full image). By using a variant of JPEG encoding, it is possible to retain much of the visible information in an image,
while still compressing the information to just a few bytes. Our compression algorithm discarded 85% of the encoded
coefficients, and was still able to transmit a coherent picture. Based on this compression and our wireless channel, we were
able to achieve approximately one frame of video per second.

4

Module Description and Implementation

Capture-Encode-Transmit System

Video Capture (RAYMOND)

The Video Capture module has many sub-modules within it (NTSC Decoder, Store 64, Set Address, VGA Controller,
Display, and Delay) whose functions will be described later. The main purpose of the Video Capture module is to connect all
the sub-modules together and maintain an internal pixel counter and line counter for the data coming from the camera, which
is in NTSC format. The reason why an intermal pixel counter and line counter are needed is because one of the sub-modules,
NTSC Decoder, only provides the start and end of lines and not the exact line number or pixel number. To compensate for
this lack of information, Video Capture uses the State output from the NTSC Decoder to initialize its internal counter and line
counter. Then, every time the data is valid (another output from the NTSC Decoder). it increments the internal pixel counter.
To increment the internal line counter, it uses the State output from the NTSC decoder. For example, if the State output
indicates the beginning of a line, and the input from the camera indicates it is in the field just before the active odd lines, then
the internal line counter will reset to 0. So, when the State output indicates the beginning of a line and the camera input
indicates it is now in the active odd lines, the internal line counter will increment.

te_in_lime_clock

. b0 al modulas
reset
» Yi2rCh to BGE Fixil data
ReR 2 Color P
Convertar Bdemory 34
24 =
ADDR |
WGA
Controliar - Display
7 tv_in_ycrch Swncing and
[19:0] blanking signals

N Widea Capdure data_in

4 worch [29:0] i
i - Store B4 %]

Wideo
30 WE
data_valid L] Memer
NTEC fﬁ (Encoder)
Decader

ADDE

Slate P
10

Set b
Addrass encoda_busy
macro_ne

Figure 2 = Block diagram of Video Capture Module.

To reset back to pixel count internal = 0, Video Capture waits until the camera is at the beginning of a line. To reset back to
line_count_internal = 0, Video Capture waits until the camera is at the beginning of a line and shows it is in the blanking field
just before the odd active field.

Amnother important purpose of the Video Capture module is that it writes color data into the color memory block (243(57600).
When the data is valid, 0 <= pixel_count_internal <= 239, and 0 <= line_count_internal <= 239, then it activates the write
enable signal for the color memory block for one clock cyele and increments the address. To account for the delay in color

conversion, the address and write enable signals are delayed for three clock cycles. E ﬁu j] Y *g

NTSC Decoder

The NTSC Decoder module takes in the 20 bit input, tv_in_ycrch, from the ADV7185, which mdﬂ&ﬂ»ﬂuliﬂﬁé%idelm com
signal to a digital signal, and decodes position indicators to figure out what part of the picture is being transmitted!. The 7
NTSC Decoder does not provide an exact location in terms of which pixel or line it is on but rather the start and end of lines.

5

At the start or end of a line, the ADV7185 sends the same sequence of bits of information followed by a position indicator in
the following form:

FF 00 o0 XY
*Mote: example shown in hexadecimal and only shows top 8 bits of information

where FF 00 00 indicates the start or end of a line and XY is the position indicator. The significant outputs from the NTSC
decoder are State, which indicates which field it is about to enter (odd/even, active/blanking, etc), data_valid, which indicates
when the Y CrCb output is valid, and the ¥ CrCh value itself.

The useful part of the NTSC decoder for this project is that it indicates when it reaches the beginning of the odd or even
active lines coming from the camera and indicates when the data is valid, meaning the camera has output a chrominance and
luminance value for one pixel (2 clock cycles).

Store 64

The Store 64 module is used to write grayscale data into memory used by the encoder module. It uses line_count_internal,
pixel_count internal, ¥, and data_valid to gather 64 bits of data to be written to the encoder memory. It has two internal
counters, data_counter and data_counter2, the first of which keeps track of when the 64 output shift register is full, the
second of which keeps track of when a line (240 pixels) has passed. It also has a two bit counter called every_other. Because
NTSC provides the odd lines and then the even lines, the picture of just one of these fields is twice as wide as it is tall. To
compensate for this, every_other will toggle on data_valid so that the shift register will only accept every other pixel to
produce a proportional image. The shift register starts and resets its internal counter every time the internal pixel counter is 0
and the internal line counter is within the active range (12 to 251). When it receives a data_wvalid, it checks the value of
every_other. If every other is 0, it shifts data in and changes every other to 1. If every_other is 1, it changes the value to
every_other to 0 and ignores the current Y value.

Set Address
This module is responsible for setting the address the data from the Store 64 shift register is written to. Before describing
how this module works, it is important to note that the data and address lines output from this module are tied to the input
data line for all eight memory blocks in the encoder memory structure. This is because the data and address are always
coming from the same source; the difference comes from writing the data sequentially to the eight blocks such that the
encoder can utilize all the data it needs to (512 bits). A state transition diagram is provided in Figure 3. Essentially, data is
shifted in until the shift register is full, at which point the data is written into the corresponding memory block for proper
encoding.

data_counter=8 &8 .

I

data, yalid &5
gvene oiar wiile, Lourier=1
p— —.-J ez |

resel
e —
e other . i v =4
Idle Shift vile. courter N — |—|
Q ytle, counger =5 -
Halg coanter < 8

S — 7

Oata sl &6

e oihar wetibn courer =¥ wrReT

Figure 3 = Set Address Finite State Machine

Mathematically speaking, there are 240 pixels in a line or thirty 64-bit packets. Each &4 bit packet is written sequentially into
one memory block until the beginning of a new line, at which point, the new-line 64 bit packets are written to the next
memory block. Once eight lines have been written, the base address incremented by 30 and the process starts again with data
being written to the first memory block. The Figure provided to help visualize this process.

VGA Controller

The VGA controller coordinates the signals that display images on the monitor. Every clock eyele, pixel_count increments by
one and resets to zero once it hits 799. Line_count increments every time pixel_count hits 0 except when line_count is 524
and pixel_count is 799. Then both counters begin again from 0. There are two blank signals, one for the horizontal and one
for the vertical directions, as well as two sync signals. The blank signal is pulled low whenever the screen should be blank.
In this case, once a line has been drawn across the screen (pixel_count = 640) then hblank (horizontal blank) should be pulled

low otherwise it would draw a line across the screen before it starts on the next line. The same goes for vblank only it goes
low when line_count =480. Vga out blank b is the And of hblank and vblank.

The sync signals are similar only they are pulled low for a shorter period than hblank or vblank and are pulled low after
hblank or vblank has been disabled. Sync signals have what are known as the front porch, sync pulse, and back porch. For
the horizontal sync signal (hsync) the front porch is 16 clock cycles at the end of which the signal is pulled low, the sync
pulse is 96 clock cycles (the period of time hsync remains low), and the back porch is 48 clock cycles, at the beginning of
which hsync is pulled high. For vsyne, the difference is the length of these intervals, 11.2, and 31 respectively, and applies as
line_count increments, not pixel_count. Hsync runs off of the pixel counter and vsyne runs off of the line counter. How the
outputs change according to the counter values in Table 1. Using a 27 Mhz clock, this provides a refresh rate of 60 Hz.

Table 1 = Blanking and Synching Signal Values

Signal Condition Value

Hhblank Pixel count <= 640 1. 0 otherwise
Hsyne 6536 < pixel count == 752 0, | otherwise
Vblank Line count <= 480 I, 0 otherwise
Vsyne 491 < line_count <= 493 0. 1 otherwise

Delay

The purpose of the delay is to ensure the sync signals (hsync and vsync) are output the same time as the RGB signals are
generated by the ADWVT125 IC (it is necessary because the IC is pipelined). The delay will delay the syne signals by 2 clock
cycles.

YCrCb to RGB Converter
This purpose of this module is to convert the Y CrCh values for a given pixel into a 24-bit RGB value so it can be displayed
on the screen. The conversion from Y., Cr, and Cb values into R, G. B values is given below:

R'=1.164 (Y = 16) + 1.596 (Cr — 128)
G'=1.164 (Y — 16) + 0.813 (Cr— 128) - 0.392 (Cb - 128)
B'=1.164 (Y — 16) + 1.506 (Cr — 128)

*Note: R, (', B' are gamma-corrected RGB values

This module is a three stage pipeline so if Y, Cr, Cb are input at t =0, then the output will not be valid until t=3. This is
important when the display sets the address for the color memory.

Display

The Display module is responsible for drawing the screen by telling the monitor what color to cutput for every pixel. It does
this by keeping track of where it is horizontally with pixel count and where it is vertically with line_count. From these two
counters it is able to draw a 640 X 480 resolution screen.

This module displays the screen by reading from memory, either the color memory on the encoder side or grayscale memory
on the decoder side depending on which labkit it us being run on. The Display module controls which memory location is
being read from the color memory block. Because the color memory block has enough memory locations for one 240 X 240
pixel frame, this module will increment every time pixel count increments within the picture frame. For example, if the
picture starts on the tenth line and the eighth pixel, then Display will reset every every time line_count = & and pixel count=
797 and increments every time pixel_count increments when pixel count is between 0 and 239, The reason why it doesn't
reset at line_count =9 and pixel_count = 0, is because there is a delay of three clock cycles between the converted RGB
values and valid ¥YCrCh values. Thus when it is written into memory, it is lagging by three clock cycles.

The Read 64 module is responsible for reading what the decoder writes into video memory on the receiving end and outputs
the correct grayscale (RGB = {Y, Y. Y'}) value for a particular line_count and pixel_count combination. Therefore, the
display module only outputs the RGB value from the Read 64 module when it is supposed to.

If pixel_count and line_count are neither in the color picture part of the screen or the grayscale part of the screen, then the
display can output any background color (this project outputted a vga out = 24 habedef).

Video Memory (Encoder)

The video memory module is written by the video capture module and read by the encoder module. The video memory stores
the 240x240 pixel captured image so that it can be encoded. The module uses eight instantiated 64x900 dual-port block
memories in order to store the full picture. Each block memory has one dedicated write port for the video capture module,
and one dedicated read port for the encoder module. This memory architecture was chosen because the original
implementation required eight simultaneous memory accesses, and each memory needed to be written and read
simultaneously. The eight simultaneous memory accesses were later removed. but the memory architecture remained.

The video memory module is given input data, write enable, and write address signals from the video capture module. These
inputs are used to write input data into memory. The encoder block gives the video memory a macro-line, block, and inter-
block row which are converted into a memory address. This memory address is used to select the specific output pixel row
for encoding.

Lire Lingx+1 Linex+7
; 1 2134 |5|68|T)|8 1123|455 |8 |78 1 2|13 |4|s5fej7 |8 -E
E a g g ;
LII'IED-? : - - L - I
: - - L] :
o (| IITTTTPke [TTTTTTRe [TTTTTT P
* i [elalelele[7]e] [lele[+lselele] [ilz[2[+lslel7]s] |
Line 231-239 & |9 3 9 !
i - =] i
ik . . ;
; HEEERT NIRRT HEEEE -

Figure 4 — Writing to Video Memory Process

Each memory address holds 8 pixels of grayscale information. Each memory holds 240 sequentialpi i sl
capture module in 30 sequential memory addresses. Each 240 pixel line of video data is loaded ﬁvﬁﬂy é
with the first line being written to the first memory, the second to the second memory and so forth. i m

is then written again in the next 30 memory addresses of the first memory. The memory storage is Ehown in E]ﬁl}é 318.com
Encoder (VIVEK)

The encoder module takes in grayscale information from the video memory and performs a proprietary Discrete Cosine
Transform (DCT) based compression algorithm. This is based on the JPEG standard of image compressions and the visual
irrelevance of high frequency noise to the human eye. The encoder converts 512 bits of data for each 8x8 pixel block into six
13-bit DCT coefficients, which is a compression of over 85%. The encoder module stores the output data in the wireless

MEMmory.

The encoder is overall a 4-stage pipeline with valid data appearing every eight clock cycles. In addition the encoder module
takes in the macro-line being written from the video capture module and a transmit busy signal from the wireless transmitter.
The encode module outputs an encode busy signal and the memory address of the coefficient block it is writing to the
wireless memory. In addition, the encoder module cutputs the macro-line, block, and inter-block row that need to be read
from video memory. The wireless memory is accessed by outputting the block number as the address and a write enable

signal.

Equation 1 — Matrix novation of DCT using 8x8 matrices.

DCT =T*IMG*T'

Equation 2 — Two dimensional Discrete Consine Transform algorithm.

MaNa 3
2 2x+1mI (2y+1
Fim,n)= T CimXCin) E_ E_ . f[it,_}"lcns[1;; R g +,,'f.mn

Figure 5 — DCT coefficients used in the encoded block.

The 2-dimensional DCT algorithm is shown in matrix form in Equation | and computation form in Equation 2. The encoding
algorithm is implemented using a matrix multiplication with the DCT coefficient matrix. The DCT converts the 8x8 block
into frequency data, with low frequency components in the top left corner and high frequency information in the lower right
commer. The human eye is unable to discemn high frequency information well, so the elimination of high frequency coefficients
does not significantly affect picture quality and allows high levels of compression. The compression algorithm used
eliminates over 90% of the available DCT coefficients. storing only the & coefficients in the top left corner in memory. The
encoded coefficients are 13-bit signed numbers. A diagram of example DCT coefficients is shown in Figure 5.

The encoder module consists of three major components: the DCT multiply module, encoder FSM, and encode memory
register. The top level block diagram is specified in Figure 6.

1 Wiisiom Erasbie,
A (100
DCT FROMNT Encode
Shift S
Rasgister
wao ||]
Vidao e Malrix_Single .
Memory | | | | Comfcian
|| | fRain
' ' ' W
! DCT BACK |
|
el 3174 I r
Ratrix_Snghe (oo mm- -I;v.TU!Jru;I‘;I I-'\..p.- Tl | T} 8
| | :
Truncate Pfistrize_Single oo o -I;:;L::: Cupud Cosl |13} =
| Module j i R 14 I | 5
| — 3
T Matrix_Singie [t o];‘TUHLT: I-'\w ol 17) ’
D _row_tnd [73] I 1 | Dol wbacd (53 i
I | Multiplier P g L o a
i | 5;-.?” 1] PMaksin_Singhe o o Module Iﬂm Conl | 13] m
= I | Register | o
| ¥ o PR Truncage .
Mlatrix Single oo o Module I-'\m Coal 1) F
| y
i |
Mabfix_Singhs 0o o -I;‘TQL:;:': Im;« Coml |13}
i roedT-0 {73
E_E Malrix Sinple [-oost o Truncase Il'u;w Do | 1|
v o - Matrix_Single |oos e ' ol |11] L]
! DCT_TABLE Mo ule |
’ |
. Malrix_Sanghe [-fosf oo -I;‘T;J:J: I-'u.-“ Craf |11}
I En-:,L:{h.:r_ | ——Chutpet_ssdect () —— g |—{ w0 |
| | FSM
| Encoder |

Figure 6 — Block diagram for encoder module.

9

DCT Multiply

The DCT multiply module takes a row of eight input pixels and performs a matrix multiplication. The module takes in eight
rows of § pixels each and a column selector signal to multiply two 8x8 matrices together. The total matrix multiplication
takes 64 clock cyeles to complete, with a column of valid cutput coefficients appearing every 8 clock cycles. The DCT
multiply module takes input data from the video memory. One caveat is that the input data from the video memory are
unsigned 8-bit pixels values and the DCT multiplication requires signed numbers. Since all video capture coefficients are
positive, each pixel value is sign extended before entering the DCT multiply module.

The matrix multiplication within the DCT multiply module is done using fixed point math. The numbers are multiplied
together and the decimal point is noted. The output of the DCT multiply is a truncated version of the final coefficient,
rounded to the nearest integer value. Fixed point math is necessary because the DCT coefficients are all numbers less than
one. Fixed point was implemented instead of floating point to simplify the math functions necessary to calculate the output
coefficients and to ensure that no data was lost or truncated unless explicitly done by the module.

The DCT multiply module contains four main sub-modules: DCT front, the multiplier shift register, DCT table and DCT
back. The DCT multiply module takes in the column select value and selects the output row from the DCT table module to
multiply against the input row. The output is the output coefficient column which is connected to the encode memory
register.

DCT Front

The DCT front module takes an & pixel input row and & pixel column and performs a single row by column matrix
multiplication. The input rows are eight pixels by 9 bits long which produce a single 21-bit output coefficient. The Xilinx
device block multipliers have a limitation of doing 18-bit by [&-bit multiplications, so the output coefficient is truncated to an
18-bit number by removing the two MSB and one LSB. This design choice was made because MATLARB tests were run on
maximum coefficient values. Based on the fixed point math, the two MSB bits could be removed without the loss of any
information. The LSB removed causes the rounding of the last 1/256 of information which was deemed acceptable to retain

image quality.

The DCT front module consists of two submodules: the single matrix multiplication and truncate modules. These modules
are specified in the above description and therefore not described in individual sections.

DCT Table

The DCT table module is a static module that outputs the DCT coefficients for use in the DCT multiply module. The DCT
coefficients were found using MATLAB and stored using fixed point notation. The coefficients are accessed as the DCT
matrix {denoted as T) and also the transpose (denoted as T°). This static module is only to provide a common resource for all
DCT coefficients. The values output do not change, and can be accessed by row and column, which allows any number of
matrix manipulations to occur. The coefficients in the table are specified in 9-bit signed format in Table 2.

Table 2 = DCT Coefficient matrix as stored in memory using fixed point notation.

a1 a1 91 21 21 o1 91 a1
126 106 71 25 =15 -TH -106 -126
118 49 -49 -11E -11E 49 40 118
106 -25 -126 -7l 71 126 25 -106
a1 -01 -91 21 a1 -1 91 a1
71 =126 25 104 =106 =25 126 =71
40 -118 (R E3 49 49 118 -118 49
25 -71 106 -126 126 | -106 71 -25

Multiplier Shift Register

The multiplier shift register is a memory accumulation shift register. The shift register takes an 18-bit coefficient and shifts it
into memory every clock cycle. The shift register has a eight coefficient depth at which point it fires the done signal
indicating that the data output is valid. The multiplier shift register is needed because the DCT front module only generates
one coefficient per clock cycle, but the DCT back module needs a column of imput data in order to compute the output
coefficients. The multiplier shift register accumulates the coefficients and outputs a 144-hit vector or eight 18-hit coefficients
to the DCT back module. The data is only valid once every eight cycles.

DCT Back
The DCT back module takes in a single 144 bit row (eight | 8-bit coefficients) and eight 72-bit input DCT vectors (eight 9-bit
coefficients). The DCT back module computes the second half of the DCT matrix multiply necessary for the matrix

10

transformation. The input row is multiplied in a row by column matrix multiplication eight times in parallel with eight DCT
vectors. The matrix multiplication is pipelined and has latency of one cycle. The output of the matrix multiplications is a 30

bit signed number. In order to achieve acceptable compression rates and to eliminate unnecessary resolution in the output
coefficients, the 30-bit signed number is truncated to a 13-bit signed coefficient. The fixed point math shows that the lowest

15 bits are less than one integer value and therefore hold very little value. The upper 15 bits are

integer. Usi.ng MATLARB simulations, the maximum value for output coefficients is 2062 for mﬁﬁ!lbm '& *é
number requires only a 13-bit signed holder to contain the information. The two MSB are therefor

not contain any useful information. The DCT back module outputs eight 13-bit coefficients to ﬂm r?ﬁ#;u 1 éthrt; C_H n

The DCT back module contains two types of subcomponents: the row by column matrix multlpllcmmn md‘ules and truncate
blocks. The functionality of these blocks is described above and is therefore not outlined in a specific section.

Encode Memory Register

The encode memory register takes a 103-bit input (eight 13-bit coefficients) and a selector from the encode FSM. The encode
memory register is a variable bit shift register which also outputs the address and write enable signals to the wireless
memory. The DCT multiplication produces eight coefficients at a time, but based on the compression scheme only the six top
corner coefficients should be written into memory. The memory register shifts the number of coefficients specified by the
output selector from the encode FSM. Each block of the input image is encoded in six coefficients. The encode memory
register stores the current number of coefficients stored. When this value reaches six, the register writes to memory and resets
the stored coefficient count.

The encode memory register has a state counter to iterate the address. Upon reset the address is set to zero and the address
increments by one every time the memory register fills with six coefficients. The write enable signal is set by the encode
memory register to write the 78-bit output vector into the wireless memory address corresponding to the block encoded. Each
encoded block is written into one memory address. When the address reaches the maximum block number of 899, the address
resets to zero.

Encode Finite State Machine (FSM)

The encode FSM controls the data flow in the encoder module. The main fimetion of the FSM is to specific the input values
to the DCT multiply module and ensuring that input data is valid by addressing the video memory, as well as control output
flow for the encode memory register and ensure that the valid data is stored and written into the wireless memory.

The encode FSM specifies all signals when the data is input into the DCT multiply pipeline. Because data flow is
unpredictable given that the video capture module acquires useful data much slower than the encoder can encode it, the
encode FSM calculates control values as the data enters the multiplier. Control signals that specify outputs are delayed to
match the pipeline and therefore are in synchronization with the data as it exits the DCT multiply pipeline.

The encode FSM has three states but many state variables including line_read. block_read, column_select, and
inter_row_cnt. These state variables as well as the macro=line input signal from the video capture module and the transmit
busy signal from the transmitter module are the basis for state change in the encode FSM. A state transition diagram is
provided in Figure 7 which summarizes the state transitions and the signals set in each state.

11

TrEPVETHE_ D e Lira_read == ling_active ——
|
i
|
v ¥
:,
IDLE i IDLE_ENCODE
encode_busy =0 encode_busy =1
outpud_pipe_int =0 | oulput_pipa_ind =0
\ &
! — 1
Default Sigrals: Trardanil_busy
Irler_fow_ont == T A&
; ﬂﬂ:ﬂddﬁ.:m}:ﬂ =1 » column_select == 7 &8
ng e il = e e T
t 2, X block_read == MAX_BLOCKS &&
black_read inl = book_nead Irder_row_cnt == 7 &4 line_read_int == ling_aciiva
column_selact_inl = column_select solumn select == T A%
irtier_rowe_cnl_inl = inber_now_cnt biock read == MAX BLOCKS BA&~ |
naxt = state fires_read_int == MAX_LINES ’
*
’—' ENCODE_BLOCK
Winber_row_cnd == 7 && "
) colurmn_salect == T A% |
State Variablas: bleck_read == MAX_BLOCKE &4 1
ine_read_inl == lne_active) |
imbar_row_cnil K& i il *
cohumn_sniect Winler_row_cnl == 7 & ENCOOE_BLOCHK
block_read oolumn_salect == 7 44 sigrals dnd speciied in
Fre_read blesk_read == MAX _BLOCKS B& tiati it Pl L A
line_raad_int == MAX_LINES)

Figure 7 — State Transition Diagram for Encoder FSM

The signals set in the ENCODE_BLOCK state are specified in Table 3.

Table 3 =Outputs for ENCODE_BLOCK state of encode FSM.

Signal

Value

Inter row cnt

{inter row ==7)70 : inter_row + 1

Column select int

({inter_row = 7) && (column_select == 7)) 7 0 : column_select + 1

Block_read ((inter_row = 6) && (column_select==T) &&
(block read = MAX BLOCKS)) ? 0 : block read + 1
Line read {(inter_row = 6) && (column_select =T &&

iblock_read = MAX BLOCKS) && (line_read =— MAX LINES)? 0 : line_read + 1

Clutput pipe int

{ 3 —inter row cnt>=0) 7?3 —inter row cnt: 0

Wireless Block Memory {Encoder Side)

The wireless block memory module at the transmitter end provides a dual port memory interface between the encoder and
wireless transmitter blocks. The memory module stores all the encoded data for a single frame. The memory module
contains 900 valid address locations and each address holds a 78-bit value. The encoder block writes data to the wireless
memory using the write port and the transmitter block reads data from the memory using the separate read port.

Wireless Transmitter (Noel Campbell)

The wireless transmitter block performs the task of sending encoded data from the camera end to the fixed end. The block
consists of 4 main modules, the transmitter control unit, transmitter shift register, RS232 sender and the wireless packet
sender. Figure 8 shows a diagram of these modules.

12

tx_busy
Encoder enc_wr_addy
10
Transmitter Control Unit
_read_addr ; to receiver
“ 710 A 4 A
L oo
§ i W i
= o
Wireless 8 < § E A
Block | F] ! L
rts
Memory * Wireless
encoata , | TXShift | %" | RS232 | wa | Packet
778" Register 7 g Sender * Sender
cis (C code)
Figure 8: Transmitter Block Diagram
Transmitter Control Unit

The transmitter control unit interacts with the transmitter shift register and RS232 Sender modules to create a major-minor
FSM architecture. The shift register and R5232 sender modules are instantiated within the control unit which manages their
inputs. The TX control unit operates by incrementing the read_addr port to the wireless block memory and then enabling the
load signal to the TX shift register module. The TX control unit then enables the send signal input to the RS232 sender
module and waits for the ready signal from the RS232 sender. The control unit then enables the shiff_once input to the shift
register and tells the RS232 sender to send another byte. This process repeats until all 78 bits from the memory address have
been sent. The control unit then increments the read addr signal and repeats the same process. The read addr is
incremented repeatedly until all encoded blocks from the wireless memory have been sent serially by the RS232 Sender. The
control unit then issues another load request and the cycle repeats continuously.

TX Shift Register

The TX shift register is a simple minor FSM that responds to a load request by loading 78 bits into internal registers. On
each shifi_once request, the minorFSM outputs 8 bits from the internal registers starting with the lowest § bits and ending
with the highest 8 bits. It is the responsibility of the higher level major FSM to keep track of the number of shifts in between
each load.

RS232 Sender

The R5232 sender module is a minor FSM that takes as input an 8 bit byte and serially outputs the bits on a single &vd output
line. The module operates at a 250 kbps baud rate (the maximum baud rate supported by the R5232 driver on the labkit).
The module samples the & bit encoded_byte input when the major FSM issues a send request. The FSM then proceeds to
send the input byte according to the R5232 protocol. The first bit sent is a start bit (a *0; bit), followed by the & data bits and
then ending with a stop bit {a *1” bit). Each bit is held for a period of 108 clock cycles in order to generate a 230 kbps baud
rate {using the labkit 27 MHz clock). The process of sending a byte ends with a constant 1 {stop signal) on the fvd line until
the next send request is issued and another byte is sent.

The R5232 Sender uses flow control in order to deal with the difference in data rate between the wireless and serial
connections. Flow control is implemented using the rts output and cis input signals. The R5232 sender issues a *07 on the ris
line so signal a request to send message to the receiver. The sender then waits for the receiver to issue a clear-to-send signal
(a *0") on the crs line which means that the receiver is ready to accept input data.

13

Wireless Packet Sender

The packet sender module receives serial input data from the RS232 sender module and assembles 11 byte packets that are
transmitted wirelessly to the wireless packet receiver module. The code for the packet sender resides on an Atmel
microcontroller on the Chipeon CC2420DBK development board. The packet sender module is quite different from the other
WVerilog modules in that it is coded in C (a printout of the code is available in the Appendix).

Receiver-Decoder-Display System

Wireless Receiver (Noel Camphbell)

The wireless receiver block performs the tasks of receiving wirelessly transmitted encoded data from the wireless transmitter
block, sending the data serially to the labkit, and then writing the data to block memory so that it can be decoded by the
decoder block. Figure 9 shows a block diagram of the wireless receiver block.

~decode_busy
Decoder
Receiver Control Unit
write_a
10
from sender wen
" -
Dol f
- ‘SI 5 Wireless
¥ ¥ ¥ E" Block
i
Wireless =, data_ready emory
Packet nd | RS232 | RXShift | eng_data
Receiver * i i = *
i . Receiver | ; . Register /18
. { ancoded_byte
Figure 9 - Wireless Receiver Block Diagram
Wireless Packet Receiver

The packet receiver module is responsible for receiving wireless data packets from the wireless sender module, and sending
the data serially from the wireless kit to the RS232 receiver module. The module is coded in C and resides on the
CC2420DBK development board. The module uses transmits serial data using a baud rate of 250 kbps. In order to avoid
problems caused by the slow wireless bit rate, the packet receiver uses flow control when sending RS232 data to the receiver.
Flow control is implemented by using the request-to-send rts and clear-to-send cts signals to determine when it is safe to send
data to the RS8232 receiver. The wireless packet receiver knows it is okay to send data when it detects a low signal (logical 0)
on its clear-to-send line.

Receiver Control Unit

The receiver control unit combines with the R5232 receiver and RX shift register modules to form a major-minor FSM
architecture for receiving encoded data from the wireless sender and writing it to block memory where it can be accessed and
decoded by the decoder block. The control unit controls the rx_ready and write_addr output signals. The control unit begins
operation after reset by setting write_addr to memory address zero and then setting rx_ready to high to signal to the R5232
receiver that it should start receiving serial data. The control unit issues a wen write enable signal each time the done signal
is issued by the RX shift register module (indicating that a new 78 bit block of data is ready to be written to memory. After a
buffer cycle to ensure a valid write function, the write_addr signal is incremented and the process repeats until write_addr
equals 899 and the address must be set back to zero.

RS232 Receiver JE @u JJI ﬂ *g
The R5232 receiver module is responsible for receiving serial data from the wireless packet recei d

bytes to the RX shift register. The module operates by first checking that the value of the rx_ready i i g high.o - -

signaling that it is okay to receive and send data to the RX shift register. The module umﬁmjﬁigmﬁé’_' n
functions by first checking for a start bit (logical 0) at each positive edge of the clock. When the beginning of a start bit is o
detected. the FSM counts to a value of 33 (half the baud rate count) and samples the signal again to ensure that the bit really

14

is a start bit. The module then repeatedly counts up to 107 (the count value that creates a baud rate of 250 kbps) and samples
the input signal on the rxd line at the end of each count. This counting repeats until & data bits are detected. The FSM then
transitions to a “receive stop bit” state for the 10™ bit and waits for the next start bit. During the “stop bit state,” the module
also asserts the data_ready output signal which lets the RX shift register know that it is okay to shift in another 8 bit byte.

RX Shift Register

The RX shift register module is responsible for receiving the 8-bit byte inputs from the RS232 Receiver module and shifting
out 78 bits at time each time the internal buffer fills. The module shifis 8 bits into internal registers each time the R8232
receiver module asserts the dara_ready line. When the shift register fills with 78 bits, it asserts the done output signal which
causes the RX control unit to write to the wireless block memory.

Wireless Block Memory (Decoder Side)

The wireless block memory module at the receiver end provides a dual port memory interface between the wireless receiver
and decoder blocks. Similar to the wireless block memory on the encoder/transmitter side, the memory module stores all the
encoded data for a single frame. The memory module contains 900 valid address locations and each address holds a 78-bit
value. The receiver block writes data to the wireless memory using the write port and the decoder block reads data from the
memory using the separate read port.

Decoder (VIVEK)

The decoder module takes in a set of DCT coefficients from the wireless memory and performs a proprietary Inverse Discrete
Cosine Transform (IDCT) based decompression algorithm. The equation for the IDCT is specified in Equation 3 and
Equation 4. This is based on the JPEG standard of image compression and extrapolates the lower frequency image
information from a compact set of coefficients. The decoder converts six 13-bit signed coefficients into a 512-bit 8x8 pixel
block. The decoder module stores the output data in the video memory.

The decoder is very similar to the encoder, and in fact shares many of the same modules. For the modules that are the same,
references are made to the previous modules for details on the implementation. The decoder is a 4-stage pipeline with valid
data appearing every eight clock cycles. The decoder connects to the wireless transmitter through a decoder busy signal and
the transmitter sends it an address active signal. These signals prevent the decoder from decoding blocks which have not been
updated with fresh data. The decode module outputs many signals to the wireless memory and to the video memory in order
to control data flow.

Equation 3 = Matrix notation of IDCT using 8x8 matrices.
DCT=T"*IMG*T

Equation 4 — Two dimensional Inverse Discrete Cosine Transform algorithm.

M-1N
2 Zx+1lmr (Zy+1nn
flay) = E E ClmCiniF(m,nicos coB
‘er m=0 n=i 2M 2N

The decode module has multiple subcomponents including DCT multiply and the decode FSM. The block diagram in Figure
10 shows the interconnection of the decoder’s submodules.

15

DCT FRONT
DECODE
e o e
Elats caspud 004 |
i DCT BACK DECODE
—Caal 28}
‘i Metrix_Singla oo TI':JDTL:: gcnmm.nm
! ! ,
i || Truneate || Metrlx_Single oo o T;"D'LDL:E' Leniut el 1)
Module [[st it [144)
A Truncale | .
nurlllin_lmr Matrix_Single |ooef (0} Mo EM'WIW Vidao
Dct_sw_irl (72} i =) Memiory
i I | Truncate | ;
%hh.lsll}:?;ar 1 Matrix_Single |Coaftaiy Ll et Coel
T In | Register
& Mairix_Single [-Coef (i m';i'::a §m|m|m
.)) Trurcale
T ded_besck: Matrix_Singla |<Coel (3014 Moduls Chagt ol (B
Bet_ros{T04 (TT1
~ “ﬂﬁ; } Truncats |
rﬁéﬁidu DCT_TABLE E_b:l_:uqrmw:-. Malrix_Singla [-Cesf () Mo ;uwr:..nn.
- Esiesoncl Truncale |
Ko Bakpct Madrin_Singla [=Coel (20} Modiss ;mp.-mm.
i Decoder Ling w5}
FSM | ok s e ———— L i e ¢
DECODER -
Figure 10 — Block diagram of Decoder module.
DCT Multiply Decode

The decoder DCT multiply is not significantly different than the DCT multiply in the encoder. The one critical difference is
the different cutputs used to multiply against the coefficients in each stage. In the encoding stage, each 8xR pixel block was
multiplied by the DCT coefficient matrix (denoted T) and then multiplied by the transpose matrix (denoted T7). In this stage,
the reserve happens. The set of image post-DCT coefficients are multiplied by T" and then T. This creates the IDCT and
allows the image to be decoded.

DCT Front Decode

The DCT front module is not significantly different than the DCT front in the encoder. The only difference is the bit widths
coming into the first stage multiply. The coefficients are 13-bit signed numbers, and thus require different multiply modules
to accommodate the larger input width. However, the output is still truncated to 18<bit signed coefficients, and the data flow
path is identical.

DCT Table
This module is unchanged from the encoder. Please refer to the DCT table module in the encoder for details on how this
module is implemented.

Multiplier Shift Register

This module is unchanged from the encoder. Please refer to the multiplier shift register module in the encoder for details on
how this module is implemented.

DCT Back Decode

This module is unchanged from the encoder. Please refer to the DCT back module in the encoder for details on how this
module is implemented. The only change is that the DCT back decode does not output to a memory register but outputs
directly to the video memory.

16

Decoder FSM
The decoder FSEM is implemented in a very similar manner to the encoder FSM. The state transitions and signals are almost
identical, except that the decoder FSM is controlling data flow from the wireless memory to the video memory and the
encoder is controlling the opposite. A state transition diagram is included in Figure 11.

Transrmd_busy

Lime_read*30 + block_read == addr_actve ——

IDLE
deoode_busy =0

input_pipe_int =0
- - - J .

Intar_row_cnt==T &&
column_selscl == 7 88

block_read == MAX_BLOCKS &&
line_read_int"30 + block_read_Int == addr_active

—h-; DECODE_BLOCK

- aciive) &
— DECCDE_BLOCK
aignaks ore speciied n
faltde ned in stabe dagram
agram for Decode FSN.

- encoder side but instead of eight 64 X900 dual-port block
lock memory has one dedicated write port for the decoder
The reason why the width and depth of these memories
hich can be written into memory immediately. There is no
dule requires &4 bits of information. The block memory

deo display is 64 bits.

rite address signals from the decoder module. These inputs

the video memory a macro-line, block, and inter-block

h memory holds 240 sequential pixels from the video
2l line of video data is loaded in each memory
e second to the second memory and so forth. The ninth

sses of the first memory.

e. While it also has a VGA Controller, Display, and
64 module which is responsible for reading from the
to the Display module for visual display.

IDLE_DECODE
decode_busy = 1
.nput _plpe L=

. —-v[—v“\-vmi

Diefaull Signats: Inder_row_ ol =e T &&
column_select == T &8&
decode_busy = 1 block_read == MAX_BLOCKS &&
wen_int =0 lingy_read == MAX_LINES
line_read_int = line_raad
Block_read_inl = block_read
column_sebect_int = column_select
irler_row_erl_int = imar_row_ent

next = state ’7

Hirter_row_crt==T &&

column_gelec] == T 8&
State Variables: block_read == MAX_BLOCKS &8
line_read_ind"30 + block _read_int == add:

irler_row_onl &

colurmn_galact Himter_row_crt==T &&

bk eesd colurmn_select == T &&
lirv_rariacd hlock_read == MAXY_BLOCKS 44

line_read_int == MAX_LINES)

DECODE_FSM

Figure 11 = State Transition Di

Video Memory (Deco
This module is very simi Pni.' Eﬁ

memories, it uses eight dual-p

module. and one dadlcmﬁf)q m gq 1."11:@3 élﬁlhﬁ mﬁ&ule
changed is because Ihedﬁmgr Is.at a-time, all of w
reason to store them in a shift register even TJ:bm::gh the Read 64 me
on the labkit allows different port widths so the read port for the vi

The video memory module is given input data, write enable, and w
are used to write input data into memory. The decoder block gives
row which are converted into a memory address.

Each memory address holds | pixels of grayscale information. Eac
capture module in 240 sequential memory addresses. Each 240 pix
sequentially, with the first line being written to the first memory, th
line of memory is then written again in the next 240 memory addre

Video Display (RAYMOND)

This module has fewer sub-modules than the Video Capture modu!
Delay module underneath, the main difference is that it has a Read
Video Memory on the decoder side and passing the grayscale data

17

Clock_2ThHz

= e 0 B modulas
Resat
data_out

Wideo i

Y] Fd

BT £

{Decadearn
Addr
10

Read 64

The Read 64 module reads from the video memory on the decoder side. [t is similar to the Store 64 module in that it has two
internal counters read_counter and read_counter 2. These counters are used to know when the 64 bit shift register is empty
and when the reader has reached the end of a line. Every clock cyele, the Read 64 module outputs 24 bits of RGB data that
consists of a Y value repeated three times (RGB = {Y, Y. Y}) s0 no conversion is required here. Two shift registers are
needed because when one shift register is being unloaded, the second is filled with the next § pixels worth of data. So, when
one shift register is half way unloaded, the second shift register is loaded with the next address's data. This alternating
pattern allows a continnous stream of data to be displayed on the screen. The memory architecture for the Video Memory on
the decoder side is similar to the memory on the encoder side and is further deseribed in the Video Memory (Decoder)

maodule.

Raad B4

RGB = {Y, ¥, Y}

il

24

Syncing and
blanking signals

10

lirvee
P

10

WIGEA
Controller

Figure 12 — Block diagram of the Video Display Module.

18

Display

Testing and Debugging

Video Capiure/Display Modules

In order to test the system, [created several test benches for each module to verify its functionality. When all the modules
were complete, both Video Capture and Video Display, | created a top level module and a corresponding top level testbench
to make sure all the signals were transitioning as 1 expected. The top level testbench waveform is given below.

Mest_ b wickl

Mest_th_v/reset

Aest_th w/tv_in_ycrch
Mest_tb_vidsta_vaid

Srest_th w/addib

Stest_th w/piel_count

At th_wiine_count

Mest_th wiR

est_th_w/G

Sest_th w/B

Sest_th_w/douth

Stest_th w/addia

Srest_th w/RGE_out
Messt_th_wift

At th wiuut/pivel_caunt_nlamal
Sest_th wiuutdine_count_ntemal
Sest_th w/macio_line

Mest_th_ wivnle_enables
Aest_th_widata_in

Sest_th w/gray_addia

PE2995000 p=

223354358 ps

Figure 13 - Video Capture/Display Testbench

Here, | simulated camera data by beginning lines with the FF 00 00 XY sequence every 700 eycles (an approximate length of
a line coming from the camera) and then incrementing the data by a fixed amount for the remaining clock cycles. Then 1
checked to see that the data_valid signal was transitioning as | expected, mainly that it transitions every other clock period.
Then 1 checked to see that addrb, the address that controls where the color data is read from on the encoder side, increments
every time the VGA pixel counter increments. Afier that, I checked to see that the RGB values were being converted from Y,
Cr, Cb values. | was unable to verify the values they were being converted to except with a physical test, however this
waveform shows that the R, G and B values are held for two clock cycles every other time its value changes. This makes
sense because the camera outputs only one luminance (Y') and one chrominance value (Cr or Ch) per pixel. Looking at the
equations for converting Y, Cr, Cb to RGB, this makes sense. Finally, I looked at the Y values coming out of my top level
test bench to see if my reader was working properly. This was a test to verify that my reader was able to cutput sequential Y
values which corresponded to the Y values that were written into memory. Here, I have verified this result because the Y
value increments the same amount every clock cycle.

The entire traffic light controller was tested and debugged in a systematic method involving testbenching and FPGA
simulation. Each module was tested using a test bench and writing comprehensive tests for all possible input configurations.
Test benches were used to test behavioral and also post-place and route models of the design. At times, these simulations did
not agree but an effort was made to have every module pass every test bench in both modes. Details of important modules
and the testing are represented below.

Encoder

Every module in the encoder system was test benched and tested thoroughly in ModelSim. These comprehensive test benches
are in the appendix and can be reviewed for completeness. The test results for all the submodules were successful, but are too
numerous to include in this report. The top level testing and testing strategy is summarized below for the encoder module.

The simulation results shown in Figure _ show the encoder system functioning comrectly with sample data input. The
coefficients and the write enable indicate that the correct coefficients are being generated and they are synchronized. The
block being encoded is the 8x& matrix of all 255 (all white) values. Further tests included random matrices, with the
corresponding verification with MATLAB outputs.

19

Nb_encoded_w/mas_blocks
Mo_encodes_wine_actve
Mo encoder_w/row ommrmmomm Mmoo
Ab_encoder_vtransmit_busy 0
Atb_encoden_v/encods_busy
Mi_encaded_v/inlel_rais_crl
Mo_encoder_w/block_read
Mo _encoder_v/line_1ead |
Mb_encodes_v/data_outpt TEOT4IT2R599761 91 |
Ao encoded_wAile_addiess 1]
Ab_encode_wivwen 50
Mo erncodes_v/mult 00000000}
L i
I5)
51
141
31
[
m
LU
Mb_encodes_v/oulpul_seg
|
[El

f
0
0
0
1]
]
]

0206200000 ::"'

l:ll:ll:lﬁﬂn
/i

Cuigar 1 1533333 pe |

Figure 14 = Video Encoder Testbench ModelSim waveform outputs.

The test shows that the 2062 coefficient in the 6" coefficient position and zeros in all lower coefficient positions is
synchronized with the written enable. The write address is also incrementing in the cycle after the write, which shows the
system is moving forward into the new write cycle. The encode busy signal is high for the duration of the encoding.

Further testing on the encoder included connecting the encoder and the wireless transmission module, and placing a known
COE file in the video memory and using the logic analyzer to verify that the outputs were being sent correctly. This testing
was physical testing and was very useful in debugging and was proven correct in the final testing phases.

Decoder

Every module in the decoder system was test benched and tested thoroughly in ModelSim. These comprehensive test benches are in the
appendix and can be reviewed for completeness. The test results for all the submodules were successful, but are too numerous W include in
this report. The top level festing and testing strategy 15 summarized below for the encoder module.

The simulation results shown in Figure _ show the decoder system functioning correctly with sample data input. The coefficients and the
write enable indicate that the correct coefficients are bemng generated and they are synchronized. The block being encoded is the 8x8 matrix
of all 2062 which is the encoded equivalent of an all white block.. Further tests included random encoded matrices, with the corresponding
verification with MATLAB outputs.

20

b decoder wick i}

Ab decode_v/ieset 1

Mto_decades w/mae_lnes s

Mo _decodes_w/mas_blocks 2

M decades w/addactive 50

M decodes_w/rom 0
Ahdecoder_v/decods busy 1

Mo _decodes_wintermw_cnt 1

My decodes_wblock_read]

Mo decodes_wline tead 1 \
Mo decades w/data_ outpot 1 B O T
b decodel vien

M decoder_w/column select

Mo decodes w/input_select

Mo decoder_wAine_wite

M decodes_v/block_write:

Mo decoderwicolumng zelect wits

M decades w/coel

 Cusrl | E12963ps

Figure 15 = Decoder Testhench ModelSim waveform output.

The test shows that the column output from the decoder is all 255 data, indicating that the coefficients were decoded correctly
and recreated the all white block. The column_select write is also incrementing in the cycle after the write, which shows the
system is moving forward into the new write cycle. The decode busy signal is high for the duration of the encoding.

Further testing on the decoder included connecting the decoder and the video display unit, and placing a known COE file in
the wireless memory. The COE file was for coefficients of black and white lines on the display. This testing helped to verify
the encoding and video display subsystems. and also proved both systems in the final iterations.

Wireless Transmitter/Receiver Modules

Testing of the wireless modules was conducted by creating separate ModelSim testbenches for each of the modules (the
testbench for each module is included in the appendix). Because of the difficulty of simulating some of the input data such as
the serial input signals associated with RS232, further testing was necessary to validate the communication between the
R5232 modules and the wireless kit. This was done by connecting the labkit to the wireless sender module using a serial was
created that looped through the ASCII alphabet to see that the data path was functioning correctly. Further testing was
conducted by connecting the receiver wireless kit to the labkit and then using a Verilog module that would send the hex value
on the switches of the sender labkit and display the ASCII text on the alphanumeric display of the receiver labkit. Both of
these tests functioned correctly and proved that communication was functioning properly.

When all of the modules (video capture, encoder, transmitter, receiver. decoder, display) were connected in the top level
labkit file, debugging was done using the logic analyzers. The screenshot in Figure 3 displays the results of this debugging.

DATA

Figure 16: Logic analyzer screenshot verifying overall system data flow

The screenshot in Figure 3 shows the bytes of data (DATA) being received by the RS232 receiver module and the memory
addresses (write_address) to which these values are being written. It should be noted that write actions are not occurring for
every data byte because the wireless memory architecture stores T8-bit values which contain the encoded data for an entire
8x8 pixel block.

Physical Testing

The major component of the systems integration testing involved a series of physical tests using stubbed labkit
implementations and known COE files in memory. These tests were performed to quickly debug only the broken parts of the
system and to allow quick synthesis of only the incorrect portions of the overall project. Our testing methodology was to stub
out the video capture and video encoder, and place a known COE file in the wireless memory on the encoder side. Leaving
only the wireless transmitter in the labkit decreased the synthesis and generate programming file time by over 75%. Using
this implementation and a known implementation on the wireless receiver side, the logic analyzer was used to debug
synchronization signals in the wireless transmitter.

Using this testing methodology, we were able to see exact synchronization in the data packets received, and were able to
narrow down the exact errors in the matter of a few iterations. Physical testing also included testing and viewing known COE
file images, we were able to confirm the proper functionality of various subsystems of our final project.

Conclusion

The objective of this final project was to design and implement a complex digital system combining video, digital encoding,
and wireless transmission of data. The analysis presented in the previous sections shows a fully functional wireless video
surveillance system, along with in-depth analysis of the modular structure of the design. A comprehensive testing
methodology was proposed and executed, which further validated the functionality of the system.

This final project taught integration of complex digital systems and the digital interface between many diverse analog and
digital components. For designing even more complex systems, this final project demonstrates the challenges that are faced
in integrating systems, even with fully functional separate parts. Moreover, the final project allows us to test our hypothesis
that a high resolution image could be transmitted over wireless bandwidth to create a functional and useable surveillance
system. Future improvements of this project might include developing a more robust wireless communication protocol,
implementing full-color transmission, and potentially increasing the number of input video cameras.

[
[

